
Journal of Applied Mechanics and Technical Physics, Vol. 38, No. 2, 1997 

T H E O R E T I C A L  M O D E L I N G  OF O P E R A T I O N  

OF A G A S - O I L  W E L L  U N D E R  C O M P L I C A T E D  C O N D I T I O N S  

N. G. Musakaev and V. Sh. Shagapov UDC 532.546; 536.421 

Two types of solid deposits are usually observed during operation of oil and gas-oil wells. The first type 
is gas hydrates. At present the concept of the formation of hydrate deposits on well walls has been established 
[1]. According to this concept, the hydrate-formation intensity is mainly limited by the heat-balance conditions 
between the hydrate layer, the flow of carbon-hydrogen mixtures in the well, and the surrounding rocks. It is 
assumed that water and light carbon-hydrogen gases which are necessary for the formation of gas hydrates 
are always present in excess. 

The second type of deposits is high-molecular-weight carbon-hydrogen systems, which hereafter are 
called paraffin deposits. Separation of paraffin hydrocarbon from oil is caused by the decrease in temperature 
as the oil rises, gas-phase separation from oil, reduced solubility of the oil, etc. [2]. Under conditions of Western 
Siberia where rocks at great depths are frozen water-saturated media, the formation of paraffin is much more 
intense owing to a considerable cooling of the gas-liquid flow moving in a borehole. 

Therefore, in analyzing the processes that occur in oil and gas-oil wells during their exploitation, one 
should take into account three interrelated factors: hydro- and thermal dynamics of liquid-gas flow, solid-phase 
(paraffin) deposition on the inner walls of the well, and heat exchange between the well and the surrounding 
rock. 

1. Mo t ion  of a L i q u i d - G a s  M i x t u r e  in a Vert ical  Channe l .  To describe the motion of a liquid- 
gas flow in a well, we make the following basic assumptions: the temperatures in all cross sections of the well 
are equal in both (gas and liquid) phases, the flow is quasi-steady, and phase transitions occur in equilibrium. 
To take into account the interphase mass-exchange processes and the associated thermophysical phenomena 
completely, we also assume that a two-phase mixture consists of three components: a heavy component, a 
volatile component, and an intermediate component that is present in both the liquid and gas (as vapors) 
phases. The heavy component, which is a direct precursor of paraffin hydrocarbon deposition on the well 
walls, can be in the suspended solid phase (paraffin "frog" or "flakes") and in a dissolved state. In addition. 
the gas is assumed to be calorifically perfect and the fluid is assumed to be incompressible: 

p = p~RgT,  po = const. 

Here p0 (i = l, g) is the true phase density; p and T are the pressure and temperature of the two-phase flow: 
Rg is a gas constant, and the subscripts l and g are referred to the liquid and gas phases, respectively. 

The z axis is directed vertically upward, and its origin coincides with the bottom of a well. 
Allowing for the above assumptions and ignoring the change in the flow mass which is due to solid-phase 

deposition, we write an equation of conservation of mass in the form [3] 

rnt + m g  = m = const; (1.1) 

kt(g)m t + kg(9)m ~ = re(g), (1.2) 

where m i  (i = l, g) is the mass rate of the flow in the ith phase through the borehole cross section with the 
z coordinate and kt(g) and kg(g ) are the mass concentrations of the volatile component in the liquid and gas 
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phases, respectively. Note that  Eqs. (1.1) and (1.2) assume that  the flow rates of the entire mixture and of 
the volatile component ,  respectively, remain unchanged. 

In a steady-flow approximation,  the dynamics equation for the entire mixture can be written as 

m d(V~') . d(v~) = _ S ~ z z  + j tg(v~ _ Vg) _ fw _ j t S ( v t s _  v~)_(pO(l  _ a )  + p~a)Sg" (1.3) I d--'-~-t-rng dz 

Here v~' (i = l, g) is the average-momentum velocity of the ith phase, S is the cross-sectional area of the 
borehole, fw is the friction between the flow and the channel wall; jtg and j t s  are the gas-emission and 
solid-deposition intensities per unit  length of the channel; vts is the velocity of the heavy component  relative 
to the liquid phase; a is the volume fraction of the gas, and g is the acceleration of gravity. 

During the exploitat ion of oil wells, the velocity of a liquid-gas mixture is, as a rule, much lower in 
comparison with the sound velocity in the corresponding mixture. This allows us to ignore terms on the 
left-hand side of Eq. (1.3) which are at t r ibuted to inertial effects. In addition, it is possible to ignore the 
"reactive" forces Jt~(vzs - v~') and Jtg(v~ - v~) which are related to phase transitions. Equation (1.3) then 
takes the form 

dp 
- -  = - F w - ( p ~ ( 1 - 5 )  + p~a)g (Fw = fw/S) ,  
dz (1.4) 

0 Fw = (~wl4R) (p~  (1 - r - c~) 2 + pg qo2/a2)W 2 (R = R0 - ~s), 

where q~ is the volume flow-rate concentration of the gas, )~w is the friction coefficient between the flow and 
the channel walls; W is the mean discharge velocity; R0 is the radius of a lifting column, and ~ is the 
paraffin-deposit thickness. 

For the slug and circular flow regimes, to find' the friction coefficient, we can employ the relation [4] 

Aw = 0.067(158iRe + C/R) ~ [Re = (2p~(1 - a ) W R ) l # l ] ,  

where/zt is the dynamic liquid viscosity and e is the tube roughness. 
For the volume concentrat ion of the gas, we use the relation proposed by A. A. Armand [5]: 

{  .<09 ( [ 
a =  [O.S33+O.167( l+pT(1-qo) l (p~  qo>0 .9  ~ =  l + p - - ~ g j  ) .  

The equation for heat influx has the form 

dT mg dp lg fig ~ dkl(g) 1. ~1 dmt 
mc  dS  - pO dz + mt(l(g) - ,(l))-----~z + [ll(~)kg(g) +//(~)(1- ~ l (g )S l -~z -Qw,  (1.5) 

lg lg where mc = talc t + mgcg; Q~ = 2rRqw; ci (i = l, g) is the specific heat of the i th phase; l(i ) and l(g) are. 
respectively, the specific heat of liquid vaporization and solvent-gas separation; and Q~, is the heat-outflux 
intensity per unit  length of the well. 

From (1.1) and (1.2), it follows that  

drni 
dz - (mr  --'~z "-F rng dkt(g) dkg(g) / (kg(g)  - kl(g)). (1.6) 

Substituting (1.6) into (1.5), we have 

dT rng dp dkl(g) dkg(g) lg lg llgrnl 
m c - -  - + A t  + Ag - -  Qw, A t =  - l(t ) ) +  , 

dz pO dz ~ dz ml(l(g) kg(g) - kt(g ) (1.7) 

lg lg Ag = Itgmt/(kg(g) - kt(g)) , l tg = l(g)kg(g) +/(t)(1 - kt(g)). 

We also assume that  the dependence of the partial pressure of the volatile component  on the mass 
concentration of this component  in the liquid phase obeys Henry's law: 

p(g) = G(g)kl(g), (1.8) 

281 



where G(g) is Henry's constant.  
Let us set the partial pressure of the liquid vapors (intermediate component)  equal to the saturation 

pressure at a given temperature .  The pressure dependence on temperature  is usually wri t ten as 

P(t) = p(t)(T) = P(0* exp ( - T . / T ) ,  (1.9) 

where P(t), and T. are empirical approximating parameters.  In addition, the gas-phase pressure is assumed to 
satisfy Dalton's law: 

0 0 
P = P(t) + P(g), P(I) = Pg(I)R(I) T, p(g) = pg(g)R(g)T, (1.10) 

0 0 0 Pg(t) + Pg(g) = Pg, R(/)(1 - kg(g)) + R(g)kg(g) = Rg, 

where p~ ) and pOg(g) and R(t ) and R(g) are the real densities and the gas constants of the intermediate and 
volatile components,  respectively, in the gas phase. 

Using relations (1.8)-(1.10) and excluding P(I) and p(g), we obtain 

P = P(t)(T) + G(g) kt(g); ( 1.11 ) 

p(o(T_.___~) = R(/)(1 - kg(g)) = B. (1.12) 
p R(t)(1 - -  kg(g)) + R(g)kg(g) 

Differentiating (1.11) and (1.12) with respect to the z coordinate, we have 

dp dp(t) (T) dki(g) dp(t)(T) dT dp dkg(g) 
- + C(g)  , = ( T ) - g z  = Z + B ' p  , 

, dp(t)(T) T,p(t)(T) B ' =  d.__.~B = R(t)R(g) 
P(o(T) = d-----T- = T 2 ' dkg(g) (R(t)(1 - kg(g)) + R(g)kg(g)) 2 

from which 

dkt(g) { dp , dT'~ ] G 

dz = ~ z  - B B'p. (1.14) 

According to the differential equations (1.4), (1.7), (1.13), and (1.14), finding the  distribution of the 
thermodynamic  parameters  over a well requires specifying the boundary conditions at the well bo t tom and 
its head. As one of them,  it seems reasonable to require that  the pressure at the wellhead in the operation 
well be constant.  In addit ion,  it is assumed that  the flow rate of the well is determined by the oil-reservoir 
and hole-bottom pressures. As the simplest dependence of this kind, we use the expression m = K(pb - p f) .  
where Pb and pf  are the oil-reservoir and hole-bottom pressures. 

The parameter  K,  which is a characteristic of the oil reservoir, is assumed to be constant.  The value 
of K can be found, depending on the operational mode of the well (using the known quantities Pb, PI, and 
ra). V'e also assume that  the hole-bottom T I and reservoir temperatures  are equal. The  concentrations of the 
volatile component  in the liquid and gas phases [kt(g)I and kg(g)i] in the hole bo t tom are found from relations 
(1.11) and (1.12) via the bo t tom pressure and temperature:  

kt(g)I = (Pl - P(t)(TI))/G(g); (1.15) 

p( t ) (Ti ) /p  I = R(t)(1 - kg(g)i)/(R(t)(1 - kg(g)i ) + R(g)kg(g)f ). (1.16) 

With the pressure and the tempera ture  at the bo t tom assigned and with the concentrations kt(g)f and kg(g)f 
known from (15) and (16), we determine the distribution of the hydrodynamic parameters  over the well and 
at its head by integrating numerically system (1.4), (1.7), (1.13), and (1.14). 

We can reach a constant  pressure at the wellhead by choosing an appropriate pressure at the bot tom 
of the well. The wellhead pressure has an effect on the tempera ture  situation in the lifting tubing. Figure 1 
shows the curve of the mean tempera ture  of the gas-liquid flow versus the wellhead pressure at various 
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depths (curves 1-3 refer to h = 0, 200, and 500 m). Here and below, the parameters which were used to 

calculate the properties of the system considerated are as follows: Pb = 22.7 MPa, PAt=o, = 13.6 MPa, 

Tf = 353 K, H = 3000 m, R0 = 0.0315 m, Rw = 0.25 m, ml = 0.463 kg/sec, m g =  0.083 kg/sec, p~ = 
850 kg/m 3. p0 = 900 kg /m 3, Pz = 4.1.10 -3 kg/(m,  sec), pg = 1.25.10 -5 kg/(m,  sec), R(g) = 520 m2(sec 2- K), 

R(t) = 52 m2/(sec2-K), At = 0.13 kg.m/(sec3. K), As = 0.27 kg.m/(seca.  K), cz = 2100 m2/(sec 3- K). 
lg llS lg ~ 2.3- 105 m2/sec 2, l(g) = 104 m2/sec 2, = 2.105 m2/sec 2, and ~ = 1.5- 10 -5 m. Cg = 2500 m2/(sec 3. K), l(l ) 

Here H is the depth of the well; p0, )~s, and Its are the true density, the specific thermal conductivity, and the 
crystallization heat of paraffin, respectively, and Rw is the outer radius of the well. We assume that there is 
a fluid (oil) in the borehole and, for convenience of calculations, the temperature at the external boundary of 

the well is equal to the geothermal T (1). 
As seen in Fig. 1, at a definite pressure at the wellhead, the temperatures in the borehole are the 

highest ones. In our opinion, this can be accounted for as follows. 
Analysis of Eq. (1.7) shows that there are three basic factors for the change in the mean temperature 

of the liquid-gas flow as it rises to the wellhead: adiabatic expansion, phase transitions, and heat outflux 
to the surrounding rock. Note that the temperature variation that is caused by phase transitions can be 
ignored. With a decrease in the wellhead pressure, the pressure at the well bot tom also reduces, and the flow 
rate grows. As a consequence, moving more rapidly to the wellhead (the velocities of the mixture components 
increase), the product of the well releases a smaller portion of heat to the surrounding rock. However, with the 
convective heat exchange reducted, the losses in temperature by the gas-liquid flow, which are due to adiabatic 
expansion, grow. Thus, it is the realization of these factors that is responsible for the highest temperatures in 
the borehole at a certain pressure at the wellhead. A similar nonmonotonic dependence of the temperature 
on the pressure at the exit from the pipe in the flow of a real an actual gas is noted in [6]. 

To close Eqs. (1.4), (1.7), (1.13), and (1.14), it is necessary to give the heat outflux intensity Qw and 
also the paraffin-deposition intensity on the inner walls of the well. 

2. K ine t i c s  of  Paraf f in  Depos i t i on .  For the formation of paraffin deposits, it is necessary that the 
carbon-hydrogen mixture contain heavy (high-molecular-weight) components, aLld the temperature regime in 
the well (especially in the vicinity of its wails) admit the existence of the heavy phase. 

In the general case, a narrowing of the transverse cross section ("sclerosis") of the borehole, which is 
caused by paraffin deposits, is accompanied by the formation of solid-phase condensed particles in the liquid 
layer flowing near the walls. The formation of solid particles occurs owing to overcooling of this layer below the 
crystallization temperature of the heavy carbon-hydrogen components and further transfer of these particles 
to the channel wall (for example, under the action of thermocapillary forces). In addition, the diffusive and 
thermodiffusive transfers of heavy carbon-hydrogen components to the channel wall take part in the formation 
of the solid phase and its growth. 

We assume that the formation of the solid phase (paraffin) is mainly determined by the fact that 
the fluid loses the ability to flow near the wails because of its freezing with decreasing temperature. This 
assumption means that the fluid contains in excess heavy components producing the solid phase, and the 
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solid-phase deposition intensity j ts is found from the condition of the heat balance on the solid-deposit 
surface: 

Ot = -qw - As (2.1) R" 
We also assume that the inner surface of the solid phase is the isothermal surface whose temperature 

T~, is equal to the crystallization temperature Te in a carbon-hydrogen mixture flowing in the well. 
The intensity of heat exchange between the solid-phase surface and the flow is assumed to have the 

form 

qw = ~Tw(T - Ta), (2.2) 

where/3,, is the convective heat-transfer coefficient, which depends on the structure of the liquid-gas flow in 
the well and also on the specific features of the flow in the near-surface layer in the vicinity of the solid-phase 
or the channel walls. 

Since the paraffin layer grows rather slowly on the well wall (i.e., the characteristic time of complete 
clogging of the well is much greater than that for which the stationary temperature profile inside the solid 
phase is established: t ,  = 6~/X,, where X, is the thermal diffusivity of paraffin), we assume that at each 
moment, the distribution of the temperature T, in the solid layer satisfies the equation 

r_l 0 ( OTs) 
~r x ' r  Or]  = 0  ( R < r < R o ) .  

Having found the temperature distribution over the solid layer from the above equation, we substitute 
both the quantity obtained and (2.2) into Eq. (2.1). As a result, we obtain 

pOlt s 06s To - Ta (2.3) 
Ot = - ~ w ( T  - Tr + A, RIn(R/Ro)" 

Here To is the temperature of the inner wall of the well. To find it, the problem on heat exchange of a well 
with the surrounding rock should be considered. 

The above pattern of solid-phase deposition assumes that the intensity of this process can be found 
using the heat-balance condition. In the more general case, the deposition intensity depends on the mass 
transfer of the heavy component to the solid-phase surface. For the solid-phase formation intensity, we then 
write the relation 

2p~D 06, Jw(s) 
J"(') = R'~ - ~ ) ( k t ( , ) - . -  klo),) ,  at = pO , 

where j~(,) is the intensity of mass transfer of the heavy component per unit area of the solid phase, D 
is the diffusion coefficient, and kl(,) and kl(,) e are, respectively, the mean-mass concentration of the heavy 
component in the fluid and the equilibrium concentration of the heavy component at a temperature equal to 
the temperature of the solid-phase surface. Using the Schroeder equation, for the dependence of kt(,) e on the 
temperature of the solid-phase surface, we can use the expression kt(,) e = k* exp ( -T~ /Ta ) ,  where k* l(,)e l(s)~ 
and Ts* are empirical approximating parameters. 

If one assumes that no depletion of the heavy component [kl(,) = const] occurs and the temperature 
of the solid-phase surface in the separation zone changes slightly, then the dependence of kl(s)e on Ta can be 
regarded as a linear dependence. The relation for the solid-phase formation intensity then takes the form 

2p~D [Okl(s)e'~ (2.4) 
Jwo) = K, , (T,  - Ta), K, ,  = R(1 - a)  \ ~ ] T e "  

Excluding the value of the temperature Tr on the solid-phase surface from relations (2.3) and (2.4), 
we obtain 

06, fl,~(Te - T) + A, (To - Te) / (Rln(R/Ro))  

Ot + -  ,l(S ln(RIRo)))lKm] 

284 



Z, ~a'n 

2.8- 

2.6- 

2.4- 

2.2- 

2.0 
0 

2 3 / / ~  
z, km 

2.8- 

2.6- 

2.4- 

2.2- 

2.0 

Fig. 2 Fig. 3 

20 30 40 T,~ 

The value of the temperature on the solid-phase surface is found from the expression 

T~ = ~3wT + KrnltSTe - ~ s T o / ( n l n ( R / n o ) )  

13,,, + g ,n l  ts - . ~ s / ( R l n ( R / R o ) )  

On the basis of the proposed pattern, we constructed the profiles of paraffin deposition on the inner 
wall of the lifting tubing at various moments after the beginning of the operation of the well (curves 1-4 in 
Fig. 2 correspond to t = 1, 4, 7, and 8 days). Figure 3 shows the mean-temperature distribution of liquid-gas 
flow over the upper section of the well with variation in the thickness of paraffin deposits, whose profiles are 
depicted in Fig. 2. In calculations, the temperature at the beginning of paraffin crystallization is assumed to 
equal 30 ~ C. 

As seen in Figs. 2 and 3, paraffin deposits not only have no heat-insulating action but, on the contrary. 
even intensify the process of paraffin formation. In our opinion, this occurs for the following reason. As the 
deposit thickness increases, the temperature in the borehole drops owing to an increase in well pressure and a 
decrease in flow rate (and the related change in phase velocities). In turn, the temperature drop contributes 
to a more rapid growth of paraffin deposition. 

3. H e a t  E x c h a n g e  of  a Well  w i th  t h e  S u r r o u n d i n g  Rock .  To specify the heat-exchange intensity 
between a well and the surrounding rock, we shall consider, in sequence, the heat-exchange intensity between 
the flow and the well wall (or the solid phase on the wall), the heat flux through the walls, and the heat 
transfer to the surrounding rock. 

Let us divide the well into two sections along its length. In the first section which lies between the hole 
bottom and the cross section of the well where the temperature of the inner wall reaches the crystallization 
temperature for the heavy component, no solid phase is present. In this case, for the heat-exchange intensity 
we write qw = 13w(T - To). 

To find the inner-wall temperature To, it is necessary to consider the problem of external heat exchange. 
Note that if the cross section where To reaches the crystallization temperature for the heavy component is 
above the floor of the frozen rocks, in defining the temperature of the inner wall of the well the melting region 
which forms around the well should be taken into account. 

The second section is between the cross section where the solid phase starts forming and the wellhead. In 
this paraffin-deposition area of the well, the heat-exchange intensity has the following form: qw = 13w(T - Ta). 

In analysis of the unsteady heat exchange from the inner wall of the borehole to the surrounding 
rocks [7] through which the well was drilled, it is usually assumed that heat exchange is described using the 
coefficient 

1 
/~ : N , RN = Rw. (3.1) 

R N Y~  A~ 1 ln(RjRi-1) 
i=l 

In the above expression, Ri is the outer radius of the ith layer and Ai is the thermal conductivity in this layer; 
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note that i = 1 corresponds to the tubing, and i = N corresponds to the layer adjacent to the surrounding 
rock. 

If the medium in the interpipe space is in a thermogravitational-convection state, the thermal 
conductivity of the medium should be multiplied by the correction [7] 

~e = 0.049 (Gr Pr)l/3Pr ~176 

where Gr and Pr are the Grashof and Prandtl numbers, respectively. 
Figure 4 shows the distribution of the mean temperature of the flow over the well, depending on the 

kind and state of a substance in the interpipe space. It is-seen that if this space is filled with a substance of 
lower thermal conductivity, the temperature regime in the borehole substantially improves (curves 1 and 2 
correspond to oil and gas, respectively). On the other hand, if the gas is in a thermogravitational-convection 
state (curve 3), this leads to increasing heat losses of the well. The use of thermally insulated pipes makes it 
possible to improve the temperature situation in the borehole (curves 1-3 in Fig. 5) correspond to insulating- 
material thicknesses of 0, 5, and 10 mm (the remaining volume of the interpipe space is filled with oil). However. 
the fabrication of such equipment is rather complicated and, consequently, pipes of this kind are very expensive. 
We performed calculations for polyurethane [coefficient of thermal conductivity. )~ = 0.0067 W/(m.  K)] as an 
insulating material. 

As previously mentioned, to find the temperature To of the inner wall, the interaction between the well 
and the surrounding rock should be analyzed. If oil and gas-oil wells operate under conditions of permafrost 
congealment, at definite depths this interaction is accompanied by melting the ground in the vicinity of the 
wells. Therefore, in the general case, to describe the external heat exchange of a well, it is necessary to solve 
the problem of thermal conductivity with allowance for phase transitions. 

Prior to the moment of appearance of melted rock t (1), heat transfer between the well and the 
surrounding rock in the area which lies below the floor of the frozen rocks or within them obeys the equation 
of thermal conductivity 

OT (1) 0 ( OTO ) '~ 
Ot -- X(1)r-1 "~r r Or ] '  0 < t < t (1), r > Rw, X (i) = )~(i)/p(i)c(i) (3.2) 

Here and below, p(i), c(i), T(i),/~(i), and X (i) are the density, specific heat, temperature, thermal conductivity, 
and thermal diffusivity, respectively; the superscript in the brackets refers to the parameters of the frozen 
(i = 1) and melted (i = 2) rocks. 
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At the well-rock interface, we assume that  

- A  (x) 0T(x) -~3(To-T(1)), 0 < t < t  (1), r = R w .  (3.3) 
Or 

At infinity, we require tha t  the l imited-temperature condition be satisfied: OT(1)/Or = 0, 0 < t < t (I), and 
r = co. In addition, we shall write the equality condition for thermal fluxes through the inner and outer walls 
of the well: 

(OT (1)) (OTs) (3.4) 
A(1)Rw \ Or ] a .  = AsR0 \--Or--r ] ~ "  

For the processes considered, the external-heat problem described above is solved rather accurately 
and effectively by the integral method [8, 9], according to which the temperature  distribution around a well 
has the form 

T (I) = CI In(r/Rw) + C2(r/Rw) + C3, (3.5) 

subject to the boundary conditions 

T (1) = T0 {1), OT(l)/Or = 0, r = R,( t ) ,  (3.6) 

where R,(t) is the radius of the thermal action of the well, the coefficients C1, 6'2, and C3 are found from 
the condition under  which function (3.5) is subject to the boundary conditions (3.3) and (3.6), and R, is 
determined using (3.2). 

We can derive from relation (3.4) an expression for the temperature  on the inner surface of the wall. 
depending on both the thickness of solid deposits and the radius of action of the well: 

/ 3 ( ' ) ( o ,  - 1)  
To = T~ - B1 (T~ - T~,)!n(R/Ro) B, - /3(1)(0, ln(0,) - 0, 

As/A (x) - B1 ln(R/Ro) ' 0. - 1 + + 1)' 

/3(i) =/3Rw/A(i) (i = 1, 2), 0, = R,/Rw. 

The relations obtained determine the heat distributions around the well until the moment  when the 
rock tempera ture  on the borehole wall reaches the melt ing point T0,2) of the frozen rock. To describe the 
subsequent process of heat exchange between the well and the rock, we should take into account the presence 
of the melted zone between the well and the frozen-rock surface of radius R (1'2). In accordance with this, we 
write the external heat problem around the well as follows: 

-- X(2)r-I ~rr 

- ~:(I)r-1 ~ r  

A(2) OT (2) 
Or =/3(T(2)  - To), 

T (1) _- T(2) = T(1,2), 

0 T  (2) 

Ot 
OTO ) 

Ot 

t > t  (1), R w < r < R ( l ' 2 ) ;  (3.7) 

t > t (1), R (1'2) < r < co; (3.8) 

t > t  (1), r = R w ;  (3.9) 

(3.10) 

(3.11) 

r ---- R(l'2); 

_A(2) 0T  (2) t(1), R(1.2), 0 T(1) Or + A(1)0T(1) - P(1)l(x)dRO'2) Or Or d----~' t >  r =  = 0 ,  r = cx~, 

where l (1) is the heat of melt ing of the frozen rock. 
By analogy with the previous case, we use the T (1) distribution in the form of (3.5). The  coefficients 

C~, C2, and C3 are found using the boundary conditions (3.6) and (3.10), and R.(t) is found by Eqs. (3.8) 
and (3.10). 

We determine the tempera ture  profiles in the melted zone by a successive choice of steady states [10. 
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1 I] under the condition that the temperature distribution satisfies the equation 

r_ 1 0 ( 0T(2)'~ 
~r r Or ]=0 (Rw<r<R("2)). 

With allowance for the boundary conditions (3.9) and (3.10), the solution of the above expression has the 
form 

T (2) = T(1, 2) + /3(2)( T~ - T(:,2)) ln(00,2)Rwr-1 ) 
1 n t- ~(2)  ln(0(1 ,2) )  ' 0(1'2) = R(I'2)/Rw" 

The radius R0,2) of the melted zone is found from Stefan's condition (3.11). Taking into account, as in the 
preceding case, that 

A(2)Rw,, Or /ttw = AsRo 
we write the relation 

To = Ta +/3(2)(T (:2) - Ta)ln(R/Ro)/{j3(2)ln(R/Ro) - As(1 +/3 (2) ln(0(l'2)))/A (2) } 

for the temperature at the inner surface of the channel. 
Thus, we have developed a theoretical model of operation of a well with allowance for the combined 

action of processes such as the flow of a gas-oil mixture in the borehole of a well, paraffin deposition on the 
inner wall of the channel, and heat exchange between the well and the surrounding frozen rock. 
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